

WAVECOM® W-BitView

Today, the possibility to analyze and process demodulated signals with unknown protocols is important. W-BitView is a stand alone application for analyzing unknown signal. Signals with unknown protocols can be further analyzed and processed to retrieve the transmitted data. The software can also be used as a postprocessor for decoded data.

W-BitView

Bit Stream Analysis Software

W-BitView Overview

- Direct data import from the W-PCI, W-PCIe, W -CODE, W61PC or W51PC decoder
- .NET application
- User can add own functions (MatLab or C#)
- Offline, stand-alone application
- Bit manipulation tool
- Bit display tools (text, graphics)
- Multiple analyses may be processed simultaneously

What is Bit Analysis?

Bit analysis is the process of finding patterns in a seemingly random and incoherent stream of bits. The goal is to transform the bit stream into clear text, or into reliable, cryptographic text, for further processing – these objectives require that all

framing, protocol overhead, checksums, and other extraneous data should be removed. The BitView provides the user with a set of sophisticated and highly specialized tools to ease and accelerate this process, and facilitate the recovery of useful data.

Auto-update functionality

Drag and drop of functions

Toolboxes for all functions

Re-arrange functions in tree view

(ASCII or XML)

Nested docking

Auto hide

• Report generator for parameter and data

What W-BitView Offers

BitView enables the user to analyze bit streams. The range of available functions includes the display of a bit stream in various formats, simple bit stream manipulations, as well as statistical and mathematical functions, and functions based on coding theory. The tools are directed at users with experience in both coding theory and mathematics; in particular, to fully exploit some of the more complex functions a comprehensive mathematical knowledge is a requirement.

All analysis and processing steps, including the necessary parameters involved, are logged as is

each function used and its parameters. The log file is saved in ASCII (XML) format as may be edited with most text editors. It may be loaded to repeat the saved analysis steps, which enables analysis sessions to be documented and stored for later automatic rerunning, without user intervention.

The W-BitView Tool is an excellent companion to other Wavecom decoder products. W-BitView is a native .NET C# Winforms application. W-BitView offers the important feature of using custom project templates and all MATLAB Toolboxes. W-BitView Bit Stream Analysis Software

Using W-BitView

The initial steps in the bit analysis process depend on what is known about the signal, and on the skill and experience level of the use. Prior knowledge of the source, language, frequency, modulation mode, time of capture, etc. are useful pieces of information which may facilitate the analysis of the bit stream.

The various classification tools available from the Wavecom decoders should then be used. These allow a fully automatic determination of modulation type and coding format, or at least the determination of certain essential parameters of the signal, e.g. baud rate and frequency shift.

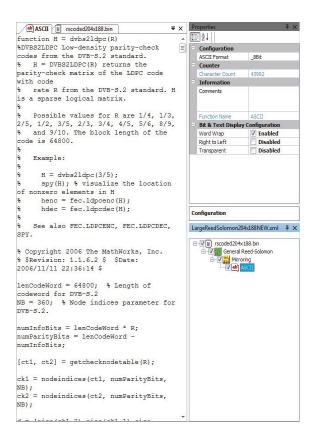
Using the autocorrelation function will tell the operator whether the bit stream contains repeating patterns, e.g. synchronization words, HDLC flags or start-stop bits.

While the Wavecom decoders contain a wealth of tools and modes, their focus is on real-time analysis; BitView gives the user the opportunity to analyze and experiment repeatedly offline with captured data in order to recover the signal content.

WAVECOM W-BV - pocsag1200Bau File Edit View Window 1	Fools Setup Help	
New Open Save Print Help	🔆 🛐 🚰 🐌 🕸 Toolbox History Property Recalc Report	
oolbox I		д
Source/Sink		art Import
Synchronisation		
Binary Modulation	101111111111110111111111111111111111111	Stop
Bit Manipulation	I 111111111111111111111111111111111111	金 基
De-Stuffing (HDLC)	00000000000000000000000000000000000000	1000000 a 10000
Mirroring	10101010101010101010101010101010101010	W61PC Server
Rotation	01	O W-CODE Server
Shift	10101010101010101010101010101010101010	5
Polarity	01010101010101010101010101010101010101	0
De-Interleaving Block	10101010101010101010101010101010101010	
	01010101010101010101010101010101010101	HF
De-Interleaving Stream	10101010101010101010101010101010101010	127.0.0.1
AND/OR/XOR/NOT	01010101010101010101010101010101010101	33234 per 1
AND/OR/XOR/NOT Range		
Extraction (Mask)		HE
Extraction (Range)	110000011001011011010000000100111110110	127.0.0.1
Cutting	001101000111010010100100101010100000000	
Decoding/Equalizer	L10011011000100011111001100001010100001110011010	
CRC & Polynomial	01101001010100001010001010001100000011010	ņ
Unpacking/Decompress	0111101101011101000000100010010011010101	4
Descrambler	010001100101011010001001100000011100100	d
Channel Encoding	100110000101101000011101000011110100100	nge)
Channel Decoding (Protocol)	0001100110100001010100010011010000110100011010	
Source Decoding (Alphabet)	001100101101110101001001110010111100000100011010	
Analysis Tools		rity (Even/Odd/Mark/Space)
Custom Library		traction (Range) Extraction
🚯 Test CustomLib Matlab		Mirroring
est Symbol Transcoding	0000.0030H FF	ASCII
est Simulate STANAG-4285	0000.0040H FF	Extraction
st STANAG-4285 DeInterleaver		Parity from Polynomial
st STANAG 4285 Descrambler	0000.0070H FF FD FF F7 FF	
st Stream setup for Viterbi		rity (Even/Odd/Mark/Space) tting
st CustLibFuncBuiltIn		Extraction (Range)
of CustLibFuncText	0000.00B0H 55 55 55 55 55 55 55 55 55 55 55 55 55	Cutting
	0000.00C0H 55 55 55 55 55 55 55 55 55 55 55 55 55	Extraction
st CustomLibFunction	0000.00D0H 55 55 55 55 55 55 55 55 55 55 55 55 55	E-V 111 Mirroring
est VDL2 Deinterleaver	0000.00F0H 55 55 55 55 83 69 AF C8 B7 9F C1 CD BD 7C 9A 96 UUUU.1	ASCII

POCSAG Decoding Example

W-BitView Bit Stream Analysis Software

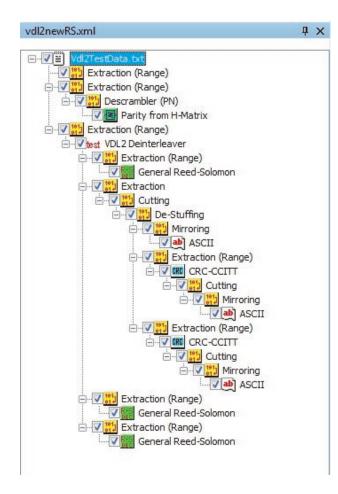


Custom Functions

The user may expand the functionality of BitView by adding custom functions developed in Visual Studio C# .NET. Project templates are included with the BitView package. The user may use these templates as a starting point for his development work. The .NET DLL templates come in two flavors, with and without MATLAB linking. This feature allows bit stream manipulation in MATLAB to be included in a custom function. The procedure is described in detail in the BitView manual. A MATLAB Runtime is installed together with BitView and is required in order to allow a MATLAB function to work in a .NET environment without the user acquiring a complete MATLAB system.

MATLAB[™] Runtime Library

MATLAB includes numerous toolboxes with several thousand functions for a multitude of applications. One such toolbox is called the Communications Toolbox including error detection and correction, interleaving, modulation and demodulation, equalizing and many other functions. Similar functions developed in C# are also found in BitView, e.g. a Reed-Solomon Decoder. Although complex features like block code analysis are found in MATLAB, they must be developed by the user in the proprietary programming language of MATLAB. To do so the built-in functions are used. For instance way a clever student has in this way developed a MATLAB program for the analysis of block codes and convolutional codes, which was published with his master thesis. This feature would have been very difficult to realize in .NET C# and was the reason for the integration of MATLAB in W-BitView. For the experienced MATLAB user this combination is very useful.



Reed-Solomon Example

W-BitView

Bit Stream Analysis Software

Flow chart with VDL-M2

W-BitView Analysis Set Examples

Example	Analysis_BCH63_51 Analysis_ConvDataR1-2-K7 Analysis_RUM-FEC_164_Scrambled Baudot150 GenPseudo NewDepuncturingTest psk-31 rumfec-164 Stanag Scrambling sequence Stanag4285Simulation_300bps_long Stanag4285Simulation_2400bps_long Stanag4285Simulation_2400bps_short vdl2newRS	Analysis_BVTest.zip Analysis_Packet-300_2-V11 Analysis_s4285_5N1_V11 Fec-a-96-sreg72 LargeReedSolomon204-188NEW pocsag1200Baud reed-solomon-testNEW sitor-A Stanag4285-600-long-new Stanag42855imulation_1200bps_long Stanag4285Simulation_2400bps_long_Noise unzip

W-BitView Toolbox Functions

Signal Source/Sink Synchronization	Import Text Data Import Hex Data Import Binary Data Import "Demodulated Bitstream" from W-CODE, W-PCIe, W-PCI, W74PC or W61PC Export Text Data Generate Pseudo-Noise Preamble NRZ-I
Binary Modulation	NRZ-M NRZ-S Bi-Phase-L (Manchester) Bi-Phase-M Bi-Phase-M DBi-Phase-S
Bit Manipulation	De-Stuffing (HDLC) Mirroring Rotation Shift Polarity De-Interleaving Block De-Interleaving Stream AND/OR/XOR/NOT AND/OR/XOR/NOT Range Extraction (Mask) Extraction (Range) Cutting
Decoding/Equalizer	Viterbi-Decoding De-Puncturing Standard De-puncturing Difference-Decoding BCH-Decoding Block-Code-Analysis Convolutional-Code-Analysis General-Reed-Solomon-Decoding
CRC & Polynomial	CRC (132) CRC-8 CRC-10 CRC-12 CRC-16 CRC-CCITT CRC-32 Parity (Even/Odd/Mark/Space) Parity from H-matrix Parity from polynominal
Unpacking/Decompress	Unzip
Descrambler	Descrambler (PN)

W-BitView Toolbox Functions

Channel Encoding	Convolutional Encoding	
Channel Decoding (Protocol)	ARQ-E FEC-A HNG-FEC ITA-3 (M.342) PSK-31 (Varicode)	SITOR BAUER RUM-FEC ITA-5
Source-Decoding (Alphabet)	Latin (5 bit) Third-Shift-Cyrillic (5 bit) Arabic-Baghdad-70 (5 bit) Bulgarian (5 bit) Swedish (5 bit) Danish-Norwegian (5 bit) German ITA-2 US ITA-2 UNICODE (16 bit) UTF-8 Pager-Numeric	Tass-Cyrillic (5 bit) Hebrew (5 bit) Arabic-Baghdad-80 (ATU-80) (5 bit) Bulgarian (8 bit) Swedish (7 bit) Danish-Norwegian (7 bit) French ITA2 ASCII ITA-5 UTF-7 Code Page Decoding
Analysis Tools	Symbol Statistics Signal Duration	Autocorrelation Bit Sync Analysis
Custom Library	Test CustomLib Matlab Simulate STANAG-4285 Stream setup for Viterbi Test CustLibFuncText Test VDL2 Deinterleaver	Symbol Transcoding STANAG-4285 Descrambler Test CustLibFuncBuildIn Test CustLibFunction

W-BitView Properties and Configuration

Function	Configuration Input Server Bit Counter Graphic Display Configuration Bit & Text Display Configuration File Information Graphic Layout Configuration HexView Configuration Input Device Configuration for W-CODE, W-PCI, W-PCIe, W74PC or W61PC
----------	---

Since more than thirty years Wavecom Elektronik AG has developed, manufactured and distributed high quality devices and software for the decoding and retrieval of information from wireless data communication in all frequency bands. The nature of the data communication may be arbitrary, but commonly contains text, images and voice. The company is internationally established within this industry and maintains a longstanding, world-wide network of distributors and business partners.

Product Information	
Products	http://www.wavecom.ch/product-summary.php
Datasheets	http://www.wavecom.ch/brochures.php
Specifications	http://www.wavecom.ch/product-specifications.php
Documentation	http://www.wavecom.ch/manuals.php
Online help	http://www.wavecom.ch/content/ext/DecoderOnlineHelp/default.htm
Software warranty	One year free releases and bug fixes, update by DVD
Hardware warranty	Two years hardware warranty
Prices	http://www.wavecom.ch/contact-us.php

System Requirements and Ordering Information

	Minimum	Recommended
CPU	P4 Dual-Core 2.4 GHz	Core i5 or Core i7 2.8 GHz
Memory	2 GB RAM	4 - 8 GB RAM
OS	Windows XP	Windows 7 32-bit or Windows 7 64-bit
Product Code	Description	
WBV	Stand alone bit-level analysis tool	

Distributors and Regional Contacts

You will find a list of distributors and regional contacts at <u>http://www.wavecom.ch/distributors.php</u>

WAVECOM ELEKTRONIK AG 8090 Zurich, Switzerland E-Mail: sales@wavecom.ch Internet: www.wavecom.ch

© WAVECOM ELEKTRONIK AG - Brochure 2024 - All rights reserved

Microsoft, Encarta, MSN and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. MATLAB[®] is a registered trademark of The MathWorks, Inc.